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Background:

Results published in the field of feature or variable selection (see e.g. the specid issue of
JMLR on variable and feature selection: http://mww.jmir.org/papers/specid/feature.html)
are for the most part on different data sets or used different data splits, which make them
hard to compare. We formatted anumber of datasets for the purpose of benchmarking
variable selection algorithms in a controlled mannert. The data sets were chosen to span a
variety of domains (cancer prediction from mass-spectrometry data, handwritten digit
recognition, text classfication, and prediction of molecular activity). One dataset is
atificia. We chose data sets that had sufficiently many examplesto creste alarge

enough test st to obtain Satigticaly sgnificant results. The input variables are

continuous or binary, sparse or dense. All problems are two-class classification problems.
The similarity of the tasks alows participants to enter results on dl data sets. Other
problems will be added in the future.

Method:
Preparing the data included the following steps:

- Preprocessing data to obtain features in the same numerical range (O to 999 for
continuous data and 0/1 for binary data).

- Adding “random” features digtributed smilarly to the red features. In what
follows we refer to such features as probes to distinguish them from the red
features. Thiswill dlow usto rank dgorithms according to their gbility to filter
out irrdlevant festures.

- Randomizing the order of the patterns and the features to homogenize the data.
Training and testing on various data splits usng smple feeture selection and
classfication methods to obtain basdine performances.

Determining the gpproximate number of test examples needed for the test set to
obtain gatistically significant benchmark results using the rule-of-thumb nest =
100/p, where p isthe test set error rate (see What size test set gives good error rate
esimates? 1. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. PAMI, 20 (1),
pages 52--64, |[EEE. 1998, http://www.clopinet.comvisabelle/Paperstest-
szeps.Z). Sncethetest error rate of the classfiers of the benchmark is unknown,
we used the results of the baseline method and added a few more examples.
Splitting the data into training, vaidation and test set. The Sze of the validation
st isusualy smdler than that of the test set to kegp as much training data as
possible.
Both vaidation and test st truth-vaues (Iabels) are withheld during the benchmark. The
vaidation set serves as development test set. During the time dlotted to the participants
to try methods on the data, participants are alowed to send the validation set results(in

1 In thisdocument, we do not make a distinction between features and variables. The benchmark addresses
the problem of selecting input variables. Those may actually be features derived from the original variables
using a preprocessing.



the form of classfier outputs) and obtain result scores. Such score are made avalable to
al participants to stimulate research. At the end of the benchmark, the participants send
thelr test set results The scores on the test set results are disclosed smultaneoudy to all
participants after the benchmark is over.

Dataformais.

All the data sets are in the same format and include 8 filesin ASCII formeat:
dataname.param: Parameters and statistics about the data

dataname.feat: Identities of the features (in the order the features are found in the data).
dataname train.data: Training set (a spase or aregular matrix, paternsin lines, features
in columns).

dataname valid.data: Vdidation st.

dataname test.data: Test st.

dataname _train.labels: Labds (truth vaues of the classes) for training examples.
dataname valid.labels: Vdidation set labels (withheld during the benchmark).
dataname test.labels: Test st labds (withheld during the benchmark).

The matrix dataformats used are:

- For regular matrices a gpace delimited file with anew-line character at the end of
eech line.

- For sparse matrices with binary values. for each line of the matrix, a space
delimited list of indices of the nontzero values. A new-line character at the end of
eech line.

- For sparse matrices with non-binary values: for each line of the matrix, a space
delimited lig of indices of the non-zero vaues followed by the vaue itsdf,
separated from it index by a colon. A new-line character a the end of each line.

The results on each dataset should be formatted in 7 ASCII files:

dataname _train.resu +-1 classfier outputs for training examples (mandatory for final
submissions).

dataname_valid.resu: +-1 classfier outputs for validation examples (mandetory for
development and final submissons).

dataname test.resu: +-1 classfier outputs for test examples (mandatory for final
submissons).

dataname _train.conf: confidence vaues for training examples (optiond).

dataname valid.conf: confidence vaues for vaidation examples (optiond).
dataname _test.conf: confidence values for test examples (optiond).

dataname.feat: list of features selected (one integer festure number per line, sarting
from one, ordered from the most important to the least important if such order exists). If
no ligt of featuresis provided, it will be assumed that dl the festures were used.

Format for classifier outputs:

- All .resu files should have one +- 1 integer vaue per line indicating the prediction for
the various patterns.

- All .conf files should have one decimd positive numeric value per line indicating
classfication confidence. The confidence vaues can be the absolute discriminant values.
They do not need to be normalized to look like probabilities. They will be used to
compute ROC curves and Area Under such Curve (AUC).



Result rating:
The classfication results are rated with the balanced error rate (the average of the error

rate on training examples and on test examples). The area under the ROC curveisaso be
computed, if the participants provide classification confidence scores in addition to class
label predictions. But the relative strength of classifiersisjudged only on the
balanced error rate. The participants are invited to provide the list of features used. For
methods having performance differencesthat are not satistically significant, the
method using the smallest number of featureswins. If no feature set is provided, it is
assumed that dl the features were used. The organizers may then provide the participants
with one or severa test sets containing only the features sdected to verify the accuracy of
the classifier when it uses those features only. The proportion of random probesin the
feature set is al'so be computed. It is used to assess the relative strength of method with
non-datidicaly sgnificantly different error rates and ardative difference in number of
features that is less than 5%. I n that case, the method with smallest number of
random probesin the feature set wins.

Dataset A: ARCENE

1) Topic
Thetask of ARCENE isto diginguish cancer versus normd patterns from mass-
gpectrometric data. Thisis atwo-class dassfication problem with continuous input
variables.

2) Sources
a  Origind owners
The data were obtained from two sources: The Nationa Cancer Ingtitute (NCI) and the
Eagtern VirginiaMedica School (EVMYS). All the data consist of mass-spectra obtained
with the SEL DI technique. The samplesinclude patients with cancer (ovarian or prostate
cancer), and hedlthy or control patients.

NCI ovarian data:

The data were origindly obtained from http://clinical proteomi cs.steem.com/download-
ovar.php. We use the 8/7/02 data set:

http://clinical proteomi cs.steem.com/Ovari an%20Dataset%208- 7- 02.zp.

The dataincludes 253 spectra, including 91 controls and 162 cancer spectra.
Number of features. 15154.

NCI prostate cancer data:

The datawere originaly obtained from

http://clinical proteomics.steem.com/IN Cl%20Data%207-3-02.zip on the web page
http://clinica proteomi cs.steem.com/downl oad- prost.php.

There are atotd of 322 samples. 63 samples with no evidence of disease and PSA leve
lessthan 1; 190 samples with benign prostate with PSA levels greater than 4; 26 samples
with prostate cancer with PSA levels 4 through 10; 43 samples with prostate cancer with
PSA levels greater than 10. Therefore, there are 253 normal samples and 69 disease
samples. The origind training set is composed of 56 samples:




25 samples with no evidence of disease and PSA levd lessthan 1 ng/ml.
31 biopsy-proven prostate cancer with PSA leve larger than 4 ng/ml.
But the exact split is not given in the paper or on the web Ste. The origind test set
contains the remaining 266 samples (38 cancer and 228 normal).
Number of features: 15154.

EVMS prostate cancer data
The data is downloadable from:
http:/AMww.evms.edu/vpc/sddi/.
The training data data includes 652 spectra from 326 patients (Spectra are in duplicate)
and includes 318 controls and 334 cancer spectra. Study population: 167 prostate cancer
(84 state 1 and 2; 83 stage 3 and 4), 77 benign prostate hyperplasia, and 82 age-matched
normals. The test data includes 60 additiona patients. The labels for the test set are not
provided with the data, so the test spectraare not used for the benchmark.
Number of features. 48538.

b. Donor of database
This verson of the database was prepared for the NIPS 2003 variable and feature
selection benchmark by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@cl opinet.com).

c. Datereceived: August 2003.

3) Past usage
NCI ovarian cancer original paper:
“Use of proteomic patternsin serum to identify ovarian cancer Emanuel F Petricoin 111,
Ali M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon
B Mills, Charles Smone, David A Fishman, Elise C Kohn, Lance A Liotta. THE
LANCET « Vol 359 « February 16, 2002 « www.thelancet.conT’ are so far not
reproducible.
Note: Thedata used isa newer set of spectra obtained after the publication of the
paper and of better quality.
100% accuracy is eadly achieved on the test set using various data plits on thisversion
of the data.
NCI progtate cancer original paper:
Serum proteomic patterns for detection of prostate cancer. Petricoin et d. Journd of the
NCI, Val. 94, No. 20, Oct. 16, 2002. The test results of the paper are shown in Table A.1.

FP FN TP TN Error l-error | Specificity | Sengtivity

51 2 36 177 20.30% | 79.70% | 77.63% 94.74%

Table A.1: Resultsof Petricoin et al. on the NCI prostate cancer data. Fp=false
positive, FN=false negative, TP=true positive, TN=true negative.
Error=(FP+FN)/(FP+FN+TP+TN), Specificity=TN/(TN+FP), Sensitivity=TP/(TP+FN).

EVMS progtate cancer origina paper:

Serum Protein Fingerprinting Coupled with a Pattern-matching Algorithm Digtinguishes
Prostate Cancer from Benign Prostate Hyperplasa and Hedthy Men, Bao-Ling Adam, et
a., CANCER RESEARCH 62, 3609-3614, July 1, 2002.




In the following excerpt from the origind paper some basdline results are reported:

“ Surface enhanced laser desorption/ionization mass spectrometry protein profiles of
serum from 167 PCA patients, 77 patients with benign prostate hyperplasia, and 82 age-
matched unaffected healthy men were used to train and develop adecison tree
classfication dgorithm that used a nine-protein mass pattern that correctly classfied
96% of the samples. A blinded test set, separated from the training set by a dtratified
random sampling before the andlys's, was used to determine the sengitivity and
specificity of the classfication system. A sengtivity of 83%, a specificity of 97%, and a
positive predictive value of 96% for the study population and 91% for the generd

popul ation were obtained when comparing the PCA ver sus noncancer (benign prostate

hyperplasiahedthy men) groups.”

4) Experimental design
We merge the datasets from the three different sources (253+322+326=901 samples). We
obtained 91+253+159=503 control samples (negative class) and 162+69+167=398 cancer
mpl es (pogtive class). The motivations for merging datasets include:

Obtaining enough data to be able to cut a sufficient Size test et.

- Creating a problem where possibly non-linear dassfiers and non-linear festure
selection methods might outperform linear methods. The reason is that there will
be in each class different clusters corresponding differences in disease, gender,
and sample preparation.

- Finding out whether there are features that are generic of the separation cancer vs.
normal across various cancers.

We designed a preprocessing that is suitable for mass-spec data and applied it to dl the
data sets to reduce the disparity between data sources. The preprocessing conssts of the
following seps:
Limiting the massrange: We eiminated smal masses under m/z=200 that
include usually chemica noise specific to the MALDI/SELDI process (influence
of the “matrix”). We dso diminated large masses over m/z=10000 because few
features are usudly relevant in that domain and we needed to compress the data.

- Averaging the technical repeats: Inthe EVMS data, two technicd repeats were
available. We averaged them because we wanted to have examplesin the test set
that are independent so that we can apply Smple statistical tests.

- Removing the baseline: We subtracted in awindow the median of the 20%
gmallest vaues. An example of basdine detection is shown in Figure A.1.

- Smoothing: The spectrawere dightly smoothed with an exponentid kernd ina
window of 5ze 9.

- Re-scaling: The spectra were divided by the median of the 5% top vaues.

- Taking the squareroot. The square root of the al values was taken.

- Aligning the spectra: We dightly shifted the spectra collections of the three
datasets s0 that the pesks of the average spectrum would be better aigned
(Figures A.2 and A.3). As a reault, the mass-over-charge (m/z) vaues that identify
the features in the digned data are imprecise. We took the NCI prostate cancer

m/z as reference.

- Limiting more the mass range: To diminate border effects, the spectra border

were Cut.



- Soft thresholding the values: After examining the didribution of vaues in the
data matrix, we subtracted a threshold and equaed to zero dl the resulting vaues
that were negative. In this way, we kept only about 50% of norzero vaue, which
represents significant data compression (see Figure A .4).

- Quantizing: We quantized the vaues to 1000 levels.

The reaulting data set including dl training and test data merged from the three sources
has 901 patterns from 2 classes and 9500 features. We remove one pattern to obtain the
round number 900. At every step, we checked that the change in performance of a linear
SVM cdlassfier traned and tested on a random split of the data was not sgnificant. On
that bass, we have some confidence that our preprocessing did not ater sgnificantly the
information content of the data. We further manipulated the data to add random “probes’:

- We identified the region of the spectra with least information content usng an
interval search for the region that gave worst prediction performance of a linear
SVM (indices 2250-4750). We replaced the features in that region by “random
probes’ obtaned by randomly permuting the vaues in the columns of the data
metrix.

- We identified another region of low information content: 6500-7000. We added
500 random probes that are permutations of those features.

After such manipulations, the data had 10000 features, including 7000 red festures and
3000 random probes. The reason for not adding more probes is purely practica: nort
sparse data cannot be compressed sufficiently to be stored and transferred eadly in the
context of a benchmark.

100 T T T T T T T

90r

80

0r

60

40r

20

10 R L . .

0 ! ! ! ! ! ! I
0 2000 4000 6000 8000 10000 12000 14000 16000

Figure A.1: Example of basdline detection (EVMS data).
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Figure A.2: Central part of the spectra before alignment. We show in red the average NCI ovarian
spectra, in blue the average NCI prostate spectra, and in green the average EVMS prostate spectra.
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FigureA.3: Central part of the spectra after alignment. We show in red the average NCI ovarian
spectra, in blue the average NCI prostate spectra, and in green the average EVMS prostate spectra.
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FigureA.4: Distributions of the valuesin the ARCENE data after preprocessing.
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Figure A.5: Heat map of thetraining set of the ARCENE data. We represent the data matrix (patientsin
line and features in columns). The values are clipped at 500 to increase the contrast. The values are then
mapped to colors according to the color-map on the right. The stripe beyond the 10000 feature index
indicated the class |abels: +1=red, -1=green.



5) Number of examplesand class distribution

Positive ex. Negative ex. Total Check sum
Training set 44 56 100 70726744
Validation set 44 56 100 71410108
Test set 310 390 700 493023349
All 398 502 900 635160201
6) Typeof input variablesand variable statistics
Real variables Random probes Total
7000 3000 10000

All varidblesareinteger quantized on 1000 levels. There are no missing values. The
datais not very sparse, but for data compression reasons, we thresholded the vaues.
Approximately 50% of the entries are non zero. The data was saved as a non-spar se
metrix.

7) Reaultsof therun of thelambda method and linear SVM
Before the benchmark, we ran some simple methods to determine what an appropriate
number of examples should be. The “lambda’ method (provided with the sample code)
had approximately a 30% test error rate ansalinear SVM trained on dl features a 15%

error rate. The rule of thumb number_of test examples=100/test_errate=100/.15=667 led

us to keep 700 examplesfor testing.
The best benchmark error rates are of the order 15%, which confirms that our estimate
was correct.

Dataset B: GISETTE

1) Topic
Thetask of GISETTE isto discriminate between to confusable handwritten digits: the
four and the nine. Thisis atwo-class classfication problem with sparse continuous input
variables.

2) Sources

a  Origind owners

The data set was congtructed from the MNIST data that is made available by Yann
LeCun of the NEC Research Indtitute at http://yann.lecun.com/exdb/mnist/.
The digits have been Sze-normdized and centered in afixed-9ze image of dimenson
28x28. We show examples of digitsin Figure B1.
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Figure B1: Two examples of digitsfrom the MNIST database.
We used only examples of fours and ninesto prepare our dataset.
b. Donor of database
This version of the database was prepared for the NIPS 2003 variable and feature
selection benchmark by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@cl opinet.com).
c. Datereceived: Augus 2003.

3) Past usage
Many methods have been tried on the MNIST database. Here is an abbreviated list from
http://yann.lecun.com/exdb/mnig/:

[METHOD | TEST ERRORRATE (%)
|linear classifier (L-1ayer NN) | 120
|linear classifier (L-1ayer NN) [deskewing] | 84
| pairwise linear classifier I 76
| K-nearest-neighbors, Euclidean " 5.0
| K-nearest-neighbors, Euclidean, deskewed " 24
|4O PCA + quadratic classifier " 33
| 1000 RBF + linear lassifier | 36
|K-NN, Tangent Distance, 16x16 | 11
| SVM deg 4 polynomial " 11
| Reduced Set SVM deg 5 polynomial || 10
| Virtual SVM deg 9 poly [distortions] | 08
| 2-1ayer NN, 300 hidden units I A7
| 2-1ayer NN, 300 HU, [distortions] | 36
| 2-1ayer NN, 300 HU, [deskewing] | 16
2-layer NN, 1000 hidden units 45




2-layer NN, 1000 HU, [distortiong] 38
| 3-1ayer NN, 300+100 hidden units | 305
| 3-1ayer NN, 300+100 HU [distortions] | 25
| 3-1ayer NN, 500+150 hidden units I 295
| 3-1ayer NN, 500+150 HU [distortions] | 245
| LeNet-1 [with 16x16 input] | 17
| LeNet-4 I 11
| LeNet-4 with K-NN instead of last layer " 11
| LeNet-4 withlocal learning instead of 1|~ | 11
| LeNet-5, [no distortions] " 0.95
| LeNet-5, [huge distortions] " 0.85
| LeNet-5, [distortions] || 038
| Boosted LeNet-4, [distortions] || 0.7
| K-NN, shape context matching " 0.67

Reference:

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to
document recognition.” Proceedings of the |EEE, 86(11):2278-2324, November 1998.
http://yann.lecun.com/exdb/publis/index.html# ecun- 98

4) Experimental design

To congtruct the dataset, we performed the following steps:

We sdlected arandom subset of the “four” and “nine’ patterns from the training
and test sets of the MNIST.

We normalized the database 0 that the pixel values would bein the range [0, 1].
We thresholded vaues below 0.5 to increase data sparsity.

We condructed a festure set, which conssts of the origina variables (normdized
pixels) plus arandomly selected subset of products of pairs of variables. The pairs
were sampled such that each pair member is normaly digtributed in aregion of
the image dightly biased upwards. The rationae beyond this choice isthat pixels
thet are discriminative of the “four/ning’ separation are more likdy to fdl in thet
region (See Figure B2).

We diminated dl features that had only zero vaues.

Of the remaining features, we sdected dl the origind pixels and complemented
them with pairs to attain the number of 2500 fegtures.

Another 2500 pairs were used to congtruct “probes’: the values of the features
were individually permuted across patterns (column randomization). In thisway
we obtained probes that are smilarly distributed to the other features.

We randomized the order of the features.

We quantized the data to 1000 levels.



- Thedata st was Solit into training, vaidation, and test set, by putting an equa

amount of patterns of each classin every set.

In spite of the fact that the data is rather sparse (about 13% of the values are non-zero),
we saved the data as a non-sparse matrix because we found that it can be compressed

better in thisway.
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Figure B2: Example of arandomly selected subset of pixelsin the region of interest.
Pairs of pixds used as featuresin dataset B use pixes drawn randomly according to such

adigtribution.

5) Number of examplesand classdistribution

Positive ex. Negative ex. Total Check sum
Training set 3000 3000 6000 | 3197297133
Validation set 500 500 1000 529310977
Test set 3250 3250 6500 | 3404549076
All 6750 6750 13500 | 7131157186
6) Typeof input variablesand variable atistics
Real variables Random probes Total
2500 2500 5000




All varidblesare integer quantized on 1000 levels. There are no missing values. The
dataisrather spar se. Approximately 13% of the entries are non zero. The data was saved
as anon-spar se matrix, because it compresses better in that format.

7) Reaultsof therunsof the lambda and basaline methods
Before the benchmark, we ran some simple methods to determine what an appropriate
number of examples should be. The “lambda’ method (provided with the sample code)
had approximately a 30% test error rate and alinear SVM trained on all features a3.5%
error rate.
The rule of thumb number_of test examples=100/test_errate=100/ 0.035= 2857.
However, other explorations we made with on-linear SVMs and the examination of
previous performances obtained on the entire MNIST dataset indicate that the best error
rates could be below 2%. A test set of 6500 example should alow error rates aslow as
1.5%. This motivated our test set size choice. The best benchmark error rates confirmed
that our estimate was just right.

Dataset C: DEXTER

1) Topic
The task of DEXTER isto filter texts about "corporate acquisitions’. Thisisatwo-class
classfication problem with sparse continuous input variables.

2) Sources

a  Origind owners
The origina data set we used is asubsat of the well-known Reuters text categorization
benchmark. The datawas originaly collected and labeled by Carnegie Group, Inc. and
Reuters, Ltd. in the course of developing the CONSTRUE text categorization system. It
is hosted by the UCI KDD repository:
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html. David D. Lewisis
hosting va uable resources about this data (see
http://www.daviddlewis.com/resources/testcoll ections/reuters21578/). We used the
“corporate acquidition” text classfication class pre-processed by Thorsten Joachims
<thorsten@joachims.org>. The data is one of the examples of the software package
SVM-Light., see hitp://svmlight.joachims.org/. The example can be downloaded from
ftp://ftp-a.csuni-dortmund.de/pub/Userg'thorsten/svm light/examples/examplel. tar.gz.

b. Donor of database
This verson of the database was prepared for the NIPS 2003 variable and feature
selection benchmark by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@clopinet.com).

c. Datereceived: August 2003.

3) Past usage
Hundreds of articles have appeared on this data. For alist see:
http://kdd.ics.uci.edu/databases/reuters21578/README.txt




Als0, 446 citations including “ Reuters’ were found on CiteSeer:
http://citeseer.nj.nec.com.

4) Experimental design
The origind data formatted by Thorsten Joachims isin the “bag-of-words’
representation. There are 9947 features (of which 2562 are ways zeros for dl the
examples) that represent frequencies of occurrence of word stemsin text. Some
normalizations have been gpplied that are not detailed by Thorsten Joachims in his
documentation. The task isto learn which Reuters articles are about " corporate
acquistions'.

The frequency of gppearance of wordsin text is known to follow approximatdly Zipf's
law (for details, see e.g. hitp://linkage.rockefdler.eduwli/zipf/). According to thet law,
the frequency of occurrence of words, as afunction of the rank k when therank is
determined by the frequency of occurrence, is a power-law function P, ~ 1/k® with the
exponent a close to unity.

We estimated that a=0.9 gives us a reasonable approximetion of the didtribution of the
data (see FiguresC.1 and C.2).
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Figure C.1: Comparison of thereal data and the random probe data distributions.
We plot the number of nonzero vaues of a given feature as afunction of the rank of the
feature. The rank is given by the number of non-zero features. Red: red data. Blue:
smulated data
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Figure C.2: Comparison of thereal data and therandom probe data distributions. We plot the sum of
non-zero values of agiven feature as afunction of the rank of the feature. The rank is given by the number
of non-zero features. Red: real data. Blue: simulated data.

The following steps were taken to prepare our version of the dataset:

- We concatenated the origind training set (2000 examples, class baanced) ad test

st (600 examples, class balanced).
We added to the origina 9947 features, 10053 features drawn at random

according to Zipf law, to obtain atota of 20000 features. Fraction of non-zero
vauesinthered data: 0.46%. Fraction of nonzero vaues in the Smulated datax

0.5%.

- Thefeature vaues were quantized to 1000 levels.

- Theorder of the features and the order of the patterns were randomized.

- Thedatawas split into training, vaidation, and test sets, with balanced numbers
of examples of each classin each .

5) Number of examplesand classdistribution

Positive ex. Negative ex. Total Check sum
Training set 150 150 300 2885106
Validation set 150 150 300 2887313
Test set 1000 1000 2000 18992356
All 1300 1300 2600 24764775




6) Typeof input variables and variable statistics

Real variables Random probes Total

9947 10053 20000

All varidbles are integer quantized on 1000 levels. There are no missing values. The
dataisvery spar se. Approximately 0.5% of the entries are non zero. The data was saved
as a spar se-integer marix.

7) Reaultsof therun of thelambda method and linear SYM
Before the benchmark, we ran some simple methods to determine what an appropriate
number of examples should be. The “lambda’ method (provided with the sample code)
had approximately a 20% test error rate and alinear SVM trained on dl features a 5.8%
error rate.
The rule of thumb number_of test examples=100/test_errate=100/ 0.058= 1724 made it
likely that 2000 test examples will be sufficient to obtains Satigticaly sSgnificant results.
The benchmark test results confirmed that this estimate was correct.

Dataset D: DOROTHEA

1) Topic
The task of DOROTHEA isto predict which compounds bind to Thrombin. Thisisa
two-class classfication problem with sparse binary input variables.

2) Sources

a. Origind owners
The dataset with which DOROTHEA was created is one of the KDD (Knowledge
Discovery in Data Mining) Cup 2001. The origina dataset and papers of the winners of
the competition are available at: http://www.cs.wisc.edu/~dpage/kddcup2001/. DuPont
Pharmaceuticas gracioudy provided this data set for the KDD Cup 2001 competition.
All publications referring to andlyss of this data set should acknowledge DuPont
Pharmaceuticals Research Laboratories and KDD Cup 2001.

b. Donor of database
This version of the database was prepared for the NIPS 2003 variable and festure
selection benchmark by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabdlle@clopinet.com).

c. Datereceived: August 2003.

3) Past usage
a. References
There were 114 participants to the competition that turned in results. The winner of the
competition is Je Cheng (Canadian Imperiad Bank of Commerce). His presentetion is
avalableat: http://www.cs.wisc.edu/~dpage/kddcup2001/Hayashi.pdf.
The data was a so studied by Weston and collaborators:




J. Weston, F. Perez-Cruz, O. Bousquet, O. Chapdlle, A. Elisseeff and B. Schoelkopf.
"Feature Sdlection and Transduction for Prediction of Molecular Bioactivity for Drug
Deggn'. Bioinformetics
At lot of information is available from Jason Weston’ s web page, including vauable
Statistics about the data:
http://Amww.kyb.tuebingen.mpg.de/bs/people/westornvkdd/kdd.html.

b. Synopssof the origina data
One binary attribute (active A or inactive |) must be predicted.
Drugs are typicaly smdl organic molecules that achieve their desired activity by binding
to atarget Ste on areceptor. The first step in the discovery of anew drug is usudly to
identify and isolate the receptor to which it should bind, followed by testing many smal
molecules for their ability to bind to the target Ste. This leaves researchers with the task
of determining what separates the active (binding) compounds from the inactive (non-
binding) ones. Such a determination can then be used in the design of new compounds
that not only bind, but dso have dl the other properties required for a drug (solubility,
ora absorption, lack of side effects, appropriate duration of action, toxicity, €etc.).
The origind training data set conssted of 1909 compounds tested for their ability to bind
to atarget site on thrombin, akey receptor in blood clotting. The chemica structures of
these compounds are not necessary for our analysis and were not included. Of the
training compounds, 42 are active (bind well) and the others are inactive. To smulate the
real-world drug design environment, the test set contained 634 additional compounds that
were in fact generated based on the assay results recorded for the training set. Of the test
compounds, 150 bind well and the others are inactive. The compounds in the test set were
made after chemists saw the activity results for the training set, so thetest set had a
higher fraction of actives than did the training set in the origina data split.
Each compound is described by a single feature vector comprised of a classvaue (A for
active, | for inactive) and 139,351 binary features, which describe three-dimensond
properties of the molecule. The definitions of the individud bits are not included we only
know that they were generated in an internally consstent manner for al 1909
compounds. Biologicd activity in generd, and receptor binding affinity in particular,
correlate with various structura and physical properties of smdl organic molecules. The
task isto determine which of these properties are critica inthiscase and to learn to
accurately predict the classvaue.
In evaluating the accuracy, a differentid cost model was used, so that the sum of the costs
of the actives will be equd to the sum of the cogts of the inactives.

C. Reallts

To outperform these results, the paper of Weston et d., 2002, utilizes the combination of
an efficient feature selection method and a classfication Strategy thet capitalizes on the
differences in the distribution of the training and the test set. Firdt they sdlect asmal
number of reevant features (Iess than 40) using an unbaanced correlation score:

fj = Syizl Xij — | Syi:-l Xij
where the score for festure j isfj, the training datais a matrix X where the columns are
the features and the examples are the rows, and alarger score is assigned to a higher rank.

The coefficient | is a positive congtant. The authors suggest to take | >3 to select features



that have non-zero entries only for positive examples. This score encodes the prior
information that the datais unbaanced and that only postive corrdations are likely to be
useful. The score has an information theoretic motivation, see the paper for detalls.

4) Experimental design

The origind data set was modified for the purpose of the feature and variable sdlection
benchmark:

- Theorigind training and test sets were merged.

- Thefeatures were sorted according to the f; criterion with | =3, computed using
the origind test set (which isricher is pogtive examples).

- Only thetop ranking 100000 original features were kept.

- Theal zero patterns were removed, except one that was given label —1.

- For the second half lowest ranked features, the order of the patterns was
individudly randomly permuted (in order to create “random probes’).

- Theorder of the patterns and the order of the features were globally randomly
permuted to mix the origind training and the test patterns and remove the feature
order.

- Thedatawas Solit into training, validation, and test set while respecting the same
proportion of examples of the positive and negative classin each sat.

We are aware that out design biases the data in favor of the sdlection criterion f;. It
remains to be seen however whether other criteria can perform better, even with that bias.

5) Number of examplesand class distribution

Positive ex. Negative ex. Total Check sum
Training set 78 722 800 713978
Validation set 34 316 350 330556
Test set 78 722 800 731829
All 190 1760 1950 1776363

We mapped Active compounds to the target vaue +1 (positive examples) and Inactive
compounds to the target value —1 (negetive examples). We provide in the last column the
total number of non-zero values in the data sets.

6) Typeof input variablesand variable statistics

Real variables

Random probes

Total

50 000

50 000

100 000

All varidbles are binary. There are no missing values. The datais very spar se. Lessthan
1% of the entries are non zero (1776363/ (1950* 100000)). The data was saved asa
spar se-binary marix.

The following table summarizes the number of non-zero fegtures in various categories of
examplesin the entire data st.



Type Min M ax Median
Positive examples | 687 11475 846
Negative examples | 653 3185 783
All 653 11475 787

7) Resultsof therun of the lambda method
Before the benchmark, we ran some smple methods to determine what an appropriate
number of examples should be. The “lambda’ method (provided with the sample code)
had a 21% test error rate. We chose this method because it outperformed methods used in
the KDD benchmark on this dataset, according to the paper of Weston et al and we could
not outperform it with the linear SYM.
The rule of thumb number_of test examples=100/test_errate=100/0.21=476 made it
likely that 800 test examples will be sufficient to obtains Satisticaly significant results.
Thiswas dightly underestimated: the best benchmark results are around 11% error, thus
900- 1000 test examples would have been better.

Dataset E: M ADELON

1) Topic
Thetask of MADELON isto dassfy random data. Thisis atwo-classcdassfication
problem with sparse binary input varigbles.

2) Sources
The datais synthetic. It was generated by the program hypercube datam, which is
appended.

3) Past usage
None, athough the idea of the program isingpired by:
Grafting: Fadt, Incrementa Feature Sdection by Gradient Descent in Function Space
Smon Perkins, Kevin Lacker, James Theller; IMLR, 3(Mar):1333-1356, 2003.
http://www.jmlr.org/papers/'volume3/perkingd3a/perkingdd3a pdf

4) Experimental design
To draw random data, the program takes the following steps:

- Each classis composed of anumber of Gaussian clusters. N(0,1) is used to draw
for each cluster num_useful_feat examples of independent feetures.

- Some covarianceis added by multiplying by arandom matrix A, with uniformly
distributed random numbers between -1 and 1.

- Theclugters are then placed a random on the vertices of ahypercubein a
num_useful_feat dimensiona space. The hypercube vertices are placed at vaues
+ class_sep.

- Redundant fegtures are added. They are obtained by multiplying the useful
features by arandom matrix B, with uniformly distributed random numbers
between -1 and 1.

- Some of the previoudy drawn features are repeated by drawing randomly from
useful and redundant features.




- Usdess features (random probes) are added using N(0,1).

- All the features are then shifted and rescaled randomly to span 3 orders of
megnitude.

- Random noise is then added to the features according to N(0,0.1).

- Afrattionflip_y of labds are randomly exchanged.

To illugtrate how the program works, we show asmal example generating a XOR-type
problem. There are only 2 relevant features, 2 redundant features, and 2 repeated features.
Another 14 random probes were added. A total of 100 examples were drawn (25 per
clugter). Ten percent of the labels were flipped.

In Figure E.1, we show dl the scatter plots of pairs of features, for the useful and
redundant features. For the two first features, we recognize a X OR-type pattern. For the
last feature, we see that after rotation, we get afeature that done separates the data pretty
wdll.

In Figure E.2, we show the heat map of the data matrix. In Figure E.3, we show the same
matrix after random permutations of the rows and columns and grouping of the examples
per class. We notice that the data |ooks pretty much like white noise to the eye.

We then drew the data used for the benchmark with the following choice of parameters:

num_class=2; % Number of classes.
num_pat_per_cluster=250; % Number of patterns per cluster.
num_useful_feat=5; % Number of useful features.

num_clust_per class=16; % Number of cluster per class.
num_redundant_feat=>5; % Number of redundant features.
num_repeat_feat=10; % Number of repested features.

num_useless feat=480; % Number of usdess features.

class sep=2; % Scaling factor controlling cluster separation.
flip_y = 0.01; % Fraction of flipped labdls.

Figure E.4 and E.5 show the appearance of the data.
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Figure E.1: Scatter plotsof the XOR-type example data for pairsof useful and
redundant featur es. Histograms of the examples for the corresponding festures are

shown on the diagond.
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Figure E.2: Heat map of the XOR-type example data. We show al the coefficients of
the data matrix. The intendty indicates the magnitude of the coefficients. The color
indicates the sign. In lines, we show the 100 examples drawn (25 per clugter). | columns,
we show the 20 fegtures. Only the first 6 ones are rlevant: 2 useful, 2 redundant, 2
repeated. The data have been shifted and scaed by column to look “more naturd”. The
last column shows the target vaues, with some “flipped” labels.
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Figure E.3: Heat map of the XOR-type example data. Thisis the same matrix asthe
one shown in Figure E.2. However, the examples have been randomly permuted and
grouped per class. The features have aso been randomly permuted. Consequently, after
normalization, the data looks very uninformative to the eye.



o BEcE

s eowaee—
2394058484812

=

=

f=T=1 Sih i [=ar=

i —_

=R =R==R=R==R=l==R=N == Nl = =A== = N ===

HomL 2

SVes- 2o ¢
- 200NN/

A 0080000
amih Ao dh A ICAEJL L L

»
»
%
W
&
e
&
[ 4
|
&

b it b b il i
b Ab LA I L
NN P- 999

=1
o B

-1000
S1000 0108600 O S0m00 07000 0 SeE00 0 S9000 0 163000 00;o0 O 10000 0 230

=
£

Figure E.4: Scatter plots of the benchmark data for pairs of useful and redundant
featur es. We can see that the two classes overlap completely in dl pairs of festures. This
is norma because 5 dimensions are needed to separate the data
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Figure E.5: Heat map of the benchmark data for the relevant features (useful,
redundant, and repeated). We see the clustered Structure of the data.



5) Number of examplesand class distribution

Positive ex. Negative ex. Total Check sum
Training set 1000 1000 2000 488026911
Validation set 300 300 600 146425645
Test set 900 900 1800 439236341
All 2200 2200 4400 | 1073688897

Two additional test sets of the same size were drawn similarly and reserved to be able to
test the features selected by the benchmark participants, in case it becomes important to
meake sure they trained only on those features.

6) Typeof input variables and variable statistics

Real variables

Random probes

Total

20

480

500

All varidblesareinteger. There are no missing values. The dataiis not spar se. The data
was saved as a non-spar se matrix.

7) Resultsof therun of thelambda method
Before the benchmark, we ran some simple methods to determine what an appropriate
number of examples should be. The “lambda’ method (provided with the sample code)
performs rather poorly on this highly non-linear problem (41% error).
We used the K-nearest neighbor method, with K=3, with only the 5 useful features. With
the 2000 training examples and 2000 test examples, we obtained 10% error.
The rule of thumb number_of test examples=100/test_errate=100/0.1=1000 makes it
likely that 1800 test examples will be sufficient to obtains satigicaly sgnificant results.
The benchmark results confirmed that this was a good (conservative) estimate.

Appendix A: Matlab code of the lambda method

function idx=lambda. feat_sdect(X, Y, num)
%idx=lambda_feat sdect(X, Y, num)
% Feature selection method that ranks according to the dot
% product with the target vector. Note that this criterion

% may not ddiver good results if the features are not

% centered and normalized with respect to the example distribution.

% Isabelle Guyon -- August 2003 -- isabelle@clopinet.com

fva=Y"*X;

[svdl, si]=sort(-fval);

idx=9g(1:num);




function [W,b]=lambda_classfier(X, Y)
%[W,b]=lambda_classfier(X, Y)

% Thissmple but efficient two-class linear classfier
% of thetype Y_hat=X*W'+b

% wasinvented by Golub et d.

% Inputs.

% X -- Datamétrix of dim (num examples, num festures)
%Y -- Output matrix of dim (num examples, 1)

% Returns:

% W -- Weight vector of dim (1, num festures)

% b -- Biasvaue.

% Isabelle Guyon -- August 2003 -- isabelle@clopinet.com

Posidx=find(Y>0);

Negidx=find(Y <0);
Mul=mean(X(Posidx,:));
Mu2=mean(X(Negidx,:));
Sigmal=std(X(Posidx,:),1);
Sigma2=std(X (Negidx,:),1);
W=(Mul-Mu2)./(Sigmal+Sigma2);
B=(Mul+Mu2)/2,

b=-W*B";

Appendix B: Matlab code for generating synthetic data

function [ XP,YP,ixrp,iyrp, xrp,yrp,dl_CA,B,rf shift.scde] =
hypercube_data(lnum_class, num_useful_feat, num_clust_per class,
num_pat_per_cluster, num_redundant_feet, num _repeat feat, num_usdess fed,

class sep, flip_y, num _repeat va, rnd, debug, xrp, yrp,al_C,A,B,rf shift,scale)
%[XP,YP,ixrp,iyrp, xrp,yrp,dl_C,A,B,rf,shift,scae ] = hypercube data(num class 1,
num_useful_feat 2, num_clust_per _class 3, num_pat per_cluster 4, num_redundant_feat
5, num_repeat_feat 6, num_usdless feet 7, class sep 8, flip_y 9, num_repeat_vd 10, rnd
11, debug 12, xrp 13, yrp 14, dl_C 15, A 16, B 17,rf 18,shift 19,scale 20)

% Draws a pattern recognition problem at random, for anum_class-class problem.

% Useful fegtures:

% Each classis composed of a number of Gaussan clusters that are on the

% vertices of ahypercube in a subspace of dimenson num_useful_fedt.

% N(0,1) is used to draw the examples of independent features for each cluster.

% Some covariance is added by multiplying by arandom matrix A,

% with uniformly distributed random numbers between -1 and 1.

% The clugters are then placed on the hypercube vertices.

% The hypercube vertices are placed at values +-class_sep.

% Redundant festures:

% Useful features are multiplied by arandom matrix B,

% with uniformly distributed random numbers between -1 and 1.



% Repeated features:.

% Drawn randomly from useful and redundant features.

% Usdless features:

% Additiona features drawn at random not related to the concept.

% Features are then shifted and rescaled randomly to span 3 orders of magnitude.

% Random noise is then added to the features according to N(0,.1) to create severd
replicates.

% if flip_y isprovided, arandom fraction flip_y of labds are randomly exchanged.

% -- Aknowledgements. The ideaisinspired by the work of Simon Perkins.

% Inputs:

% num _class -- Number of classes

% num useful feat  -- Number of featuresinitidly drawn to explain the concept
% num_clust_per _class -- Number of cluster per class

% num_pat_per_cluster -- Number of patterns per cluster // al balanced for now, can be
generdized to imbalanced classes (can take subset of samples of each class)

% num_redundant_feat -- Number of featureslinearly dependent upon the useful
features

% num repeat feat  -- Number of features repeating the previous ones (drawn at
random)

% num_usdess feat  -- Number of features dran at random regardless of class label
information

% class sep -- Factor multiplying the hypercube dimension

% flip.y -- Fraction of y labels to be randomly exchanged.

% num repeat v -- number of times each entry is repeated (modulo some noise).
% rnd -- Hag to enable or disable random permutations.

% debug -- 01 flag.

% Returns.

% XP -- Matrix (num_pat, num _feet, num repesat_va) of randomly permuted
features

% YP -- Vector of 0,1...num_classtarget class labels (in random order, to be
used eventudly for dugtering)

% ixrp -- permutation matrix to be used to restore the original feature order
% iyrp -- permutation matrix to be used to restore the origind pattern order
(classlabels of the same class are consecutive

% and there are the same number of example per class, before label
corruption)

% Y=Y P(iyrp); X=XP(iyrp,ixrp);

%adl C -- A matrix 2°"num_useful_feat*num_useful_feeat of

% hypercube vertices where to place the cluter centers.

%A -- Matrix used to correlate the useful fegtures.

%B -- Matrix used to create dependent (redundant) features.

% rf -- Indices of repeated features.

% shift -- Shift gpplied.

% scale -- Scale applied.

% Isabelle Guyon -- July 2003 -- isabelle@clopinet.com



if nargin<8, class sep=1; end

if nargin<9, flip_y=0; end

if nargin<10, num _repeat_va=1; end
if nargin<11, rnd=0; end % disable random permutation
if nargin<12, debug=0; end

if nargin<13, xrp=[]; end

if nargin<14, yrp=[]; end

if nargin<15, al_C=[]; end

if nargin<16, A={}; end

if nargin<17, B=[]; end

if nargin<18, rf=[]; end

if nargin<19, shift=[]; end

if nargin<20, scle=[]; end

% Count features and patterns

num_feat=num_useful_feat + num repeat_feat + num_redundant_feat +
num_useless fedt;

num_pat_per_classsnum_pat per_cluster*num_clust_per class,

num_pat=num_pat_per_class*num_class,
X=zerog(num_pat, num_fest);

% Attribute classlabdls

y=0:num _dass-1;

Y =repmat(y, num_pat_per_class, 1);
Y=Y();

% Hypercube design
is XOR=0;
if num_useful_feat==2 & num_class==2 & num clust per class==2,
is XOR=1;
dl C=[-1-1;11;1-1;-11]; % XOR
dse
if issmpty(dl_C)
fprintf(‘'New C\n’);
al_C=2*ff2n(num_useful_feat)-1;
rndidx=randperm(size(dl_C,1));
al_C=dl_C(rndidx,’);
end
end

% Draw A
if isempty(A)
fprintf(‘'New A\n’);
for k=1:num_class*num clust per class
A{k} = 2*rand(num_useful_fest, num_useful_fest)-1;



end
end
% Loop over dl clugsters
for k=1L:num_class*num_clust_per class
% define the range of patterns of that cluster
kmin=(k-1)*num_pat_per_cluster+1;
kmax=kmin+num_pat_per_cluster-1;
kidx=kmin:kmax;
% Draw n features independently at random
X(kidx,1:num_useful_feat)=random('norm’, 0, 1, num_pat_per_cluster,
num_useful_feet);
% Multiply by arandom matrix to creaste some co-variance of the features
X(kidx,1:num_useful_feat)=X (kidx,1:num_useful_feat)* A{Kk};
% Shift the center off zero to separate the clusters
C=dl_C(k,))*class sep;
X(kidx,L:num_useful_feet) = X (kidx,1:num_useful_feat) + repmat(C,
num_pat_per_cluster, 1);
end

if debug,
featdisplay(normdize_data([X(:,1:num_useful_feet),Y])); title('Useful features);
figure; scatterplot(X(:, 1:num_useful_feet), Y); title('Useful features);

end

% Creete redundant features by multiplying by arandom matrix
if issmpty(B),

fprintf(New B\n);

B = 2*rand(num_useful_feat, num_redundant_fest)- 1,
end
X(:,num_useful_feat+1:num_useful_feat+num_redundant_feet)=X(;,1:num_useful_feet)
* B;

if debug,

featdisplay(normadize_data([ X (:,1:num_useful_feat+num redundant_feet),Y]));
title('Useful +redundant festures);

figure; scatterplot(X(:, :num_useful_feat+num_redundant feet), Y);
title('Useful+redundant festures);
end

% Repeat num_repeat_feat features, chosen at random among useful and redundant feat
nf=num_useful_feat+num_redundant_feet;
if isempty(rf)
fprintf(New rin’);
rf=round(1+rand(num_repeat_feat,1)* (nf-1));
end
X(:,nf+2L:nf+num_repeat_fest)=X(:,rf);



if debug,
featdisplay(normalize_data([ X (:,1:num_useful_fest+num_redundant_feat+num_repeet f
edt),Y]));
title('Useful+redundant+repested features);
end

% Add usdless features : these are uncorrelated with one another, but could be correlated
=)

X(:,num_feat-num_useless feat+1:num_feat)=random('norm’, O, 1, num_pat,
num_usdess feet);

if debug,
featdigplay(normdize daa([X,Y]));
title('All features);

end

% Add random y labdl errors

num_err_pat = round(num_pat*flip_y);

rp=randperm(num_pat);

fi=rp(L:num_err_pat);

Y (fi)=mod(Y (fi)+round(rand(num_err_pat,1)* (num_class-1)), num_class);

if debug,
featdisplay(normdize_data([X,Y]));
title('All features + flipped labels);
end

% Randomly shift and scde
if isempty(shift)
fprintf(New shift\n’);
shift=rand(num_feat,1);
end
if isempty(scale)
fprintf(New scde\n);
scale=1+100*rand(num_fest,1);
end
X=X+repmat(shift',num_pat,1);
X=X *repmat(sca€,num_pat,1);

if debug,
featdisplay([X,100* normaize_data(Y)]);
title(All features + flipped labels + scae shifted);
end

% Randomly permute the features and patterns



if isempty(Xrp)
fprintf(New xrp, yrp\n’);
if md
xrp=randperm(num_fest);
yrp=randperm(num_pat);
dse
xrp=L:num fest;
yrp=1:num_pdt;
end
end
XPO=X(yrp,xrp);
YP=Y (yrp);

if debug,
[ys pattidx] =sort(Y P);
featdigolay(normalize_data([ X PO(pattidx,:),Y P(pattidx)]));
title(After permutation and data normaization);

end

% Create inverse random indices
ixrp(xrp)=L:num _fest;
iyrp(yrp)=Ll:num_pat;

% Create saverd replicates by adding alittle bit of random noise
XP=zeroghum_pat, num feat, num repeat va);
for k=1:num_repest_va
N=random(‘norm, 0, .1*sgrt(num_repeat_va), num_pat, num_fest);
XP(:,:,K)=XP0.* (1+N);
end

if debug,
featdisplay(normalize_data([X P(pattidx,:),Y P(patticx)])):
title(After adding noise);

end



